plyny

27.12.2019
This data is very interesting because previous studies are published only for pure gases. The data obtained can be very useful for determining the safety precautions of equipment and technologies with different concentrations of pure gases, mixtures with different stoichiometric ratios and even different starting temperatures (also very important in industry). For future studies, we propose the determination of LEL and UEL of studied binary gas mixtures for various industrial applications.
27.12.2019
This scholar paper is aimed to publish the explosion parameters of carbon monoxide / methane and air mixtures. This data could be used by various commercial companies to establish explosion safety rules for the use of these mixtures. During this work, we studied the flammable gases separately and then their mixtures. First, the explosion parameters were obtained by numerical simulation. Secondly, explosion tests were carried out in the 20-L explosion vessel for different conditions (variation in initial temperature and concentration ratio of the mixture). Finally, all the results obtained were compared with the numerical predictions in order to obtain a complete information for appropriate safety solutions.
30.09.2019
Článek je zaměřen na predikci a změření výbuchových charakteristik plynu vyrobeného využitím plazmových technologií. V první části je uveden přehledný úvod k nebezpečí technologií zabývajících se problematikou výbuchových charakteristik uměle vyrobených plynů. Dále je uveden popis experimentálního zařízení, postup měření a látky, které byly k experimentům použity. V další části jsou prezentovány a porovnávány výsledky experimentálního měření s hodnotami vypočítanými a byla provedena diskuze těchto hodnot na základě srovnání s výsledky uvedenými v předchozích studiích. Poslední část závěru práce je zaměřena na možné praktické použití výbuchových parametrů plynu. Nejvýznamnějším výsledkem práce je stanovení výbuchových charakteristik plynu získaného z reálné technologie při reálných průmyslových podmínkách a všech jeho složek.
31.01.2018
The values of the coal gas explosion parameters are currently published in the form of the calculations of pure components under standard "atmospheric" conditions. No explosion characteristics of the H2-CH4-CO-C3H8-CO2-N2 and air mixtures measured in 0.02 m3 explosion autoclave have been reported in the literature. The information in the material safety data sheets are given for such complex mixtures using modified Le Chatelier equations. The maximum explosion pressure, pmax, the maximum rate of explosion pressure rise, (dp/dt)max, the deflagration index, KG, lower explosion limit, LEL, upper explosion limit, UEL and limiting oxygen concentration, LOC of coal gas with air mixture at initial temperatures 25 °C, 45 °C, 90 ° C and initial pressure 1 bar, are presented in this paper.
31.07.2017
Hodnoty výbuchových parametrů vysokopecního plynu jsou v současnosti publikovány ve formě výpočtů ze složek čistých látek, za standardních „atmosférických“ podmínek (20 °C a 101 kPa dle IUPAC). V literatuře nejsou uvedeny žádné hodnoty výbuchových charakteristik směsí H2-CH4-CO-C3H8-CO2-vzduchu změřené v&nbs;1 m3 výbuchovém autoklávu. Informace v bezpečnostních listech jsou pro takto komplexní směsi uváděny jako výsledek odhadu pomocí modifikovaných Le Chatelierových rovnic. V tomto článku jsou prezentovány dolní mez výbušnosti, LEL, horní mez výbušnosti, UEL, a mezní koncentrace kyslíku, LOC, změřené v 1 m3 výbuchovém autoklávu při teplotě 20 °C a tlaku 101 kPa. Dále jsou prezentovány vypočtené hodnoty a jejich porovnání s daty získanými experimentálně za daných zkušebních podmínek. Autor prezentuje hodnoty LEL: 13,5 obj. %, UEL: 70,6 obj. % a LOC: 6,1 obj. % pro vypočtené hodnoty a hodnoty LEL: 14,00 – 0,10 obj. %, UEL: 55,00 + 0,10 obj. % a LOC: 6,9 ± 0,10 obj. % pro změřené hodnoty. Jako budoucí experimentální výzkum lze zahrnout vliv hasiva CO2 na hodnotu výbuchových parametrů LEL, UEL a LOC.
25.07.2016
The use of liquefied natural gas, methanol, methane and hydrogen as fuels brings up issues regarding safety and acceptable risk. The potential hazards associated with an accidental release and dispersion should be evaluated. The article reports the results of different methods of modelling releases and dispersion of dangerous gases and vapors in cases of major accidents in industrial or urban zones. To describe these methods we introduce how parameters (such as amount of release gas, atmospheric conditions, buildings, tanks cracks, diameter etc.) at an industrial or urban site affect dispersion and show how these parameters can be parametrized in effects models. Effect evaluation is an important part for mitigation factors, such as water sprays, foam systems, and sheltering or evacuation, which tend to reduce the magnitude of potential effects in real incidents. The goal of this article is to present the results of modelling using these standard methods in the area of modelling of releases and dispersions of dangerous chemical substances in urban zones in cases of major accident.
11.01.2016
Gas mixture explosions and fires are responsible for most of the largest property loss events worldwide in the chemical and power industry. In this contribution, a theoretical analysis was performed of explosion behavior for CO/O2/N2, CO/O2/N2/H2O and CO/O2/N2/CO2 mixtures. Presented explosions based on real scenarios of accidents associated with transport and storage facilities with flammable chemicals. While explosions of pure flammable chemicals are well described in the literature, the information about explosions of toxic flammable substances is rather scarce. This work aims at studying the explosion behavior of pure mixture and of the inerted carbon monoxide-air mixtures at different initial temperatures and pressures. The results of mathematical modeling of the calculated maximum explosion pressure are presented.
11.01.2016
Renewable energies became more and more important in the last years. The production of biogas using agricultural waste and the use of wind and solar energy in combination with water electrolysis is one way to substitute natural gas. Therefore the number of syngas plants is growing very fast. On the other hand, the operation of such plants could be responsible for a significant number of accidents. The main focuses of this contribution are the explosion characteristics and hazards arising from the biogas. Primarily, these are the hazards of fire and explosion induced by flammable components of syngas. However, further hazards are the dangers of asphyxiation and poisoning by gases such as carbon monooxide. These hazards will be the aim of the following article. In order to prevent explosions when storing and handling syngas it is necessary to know the explosion limits of individual gas components and its gas mixtures in mixture with air. However, syngas from gasification unit can vary significantly in its composition. Therefore, for each gas composition the explosion limits would have to be determined. This would require a considerable amount of time and effort. Due to this fact, the explosion limits of syngas are frequently referred to only by the hydrogen fraction of the gas mixture in the safety-relevant literature. In reality as syngas consists of hydrogen, methane, carbon monoxide, carbon dioxide and further residual gases the explosion limits are generally over or underestimated.

Nabízíme Vám možnost BEZPLATNÉHO odběru e-mailového zpravodajství

Přehled příspěvků publikovaných na oborovém portálu BOZPinfo zasílaný každý pátek odpoledne

Provozovatel portálu

Výzkumný ústav bezpečnosti práce, v. v. i.
Jeruzalémská 1283/9
110 00 Praha 1

Sociální sítě VÚBP

facebook linkedin instagram buzzsprout twitter youtubepinterest

Kde nás najdete

X

Přihlášení

Zapomněli jste heslo?
zašleme vám nové na váš e-mail