Ing. Jana Trávníčková, Ph.D.

11.01.2016
Gas mixture explosions and fires are responsible for most of the largest property loss events worldwide in the chemical and power industry. In this contribution, a theoretical analysis was performed of explosion behavior for CO/O2/N2, CO/O2/N2/H2O and CO/O2/N2/CO2 mixtures. Presented explosions based on real scenarios of accidents associated with transport and storage facilities with flammable chemicals. While explosions of pure flammable chemicals are well described in the literature, the information about explosions of toxic flammable substances is rather scarce. This work aims at studying the explosion behavior of pure mixture and of the inerted carbon monoxide-air mixtures at different initial temperatures and pressures. The results of mathematical modeling of the calculated maximum explosion pressure are presented.
11.01.2016
A theoretical study on maximum explosion pressure is presented. The maximum explosion pressures, computed by assuming chemical equilibrium within the explosion front are examined in comparison with the measured explosion pressures. Comparisons of the experimentally measured pressures with the calculated adiabatic pressures indicate the degree of adiabacity of the explosion. The calculated peak explosion pressures of hydrogen-air mixtures for ambient conditions are examined in comparison with the experimental values and with the calculated adiabatic explosion pressures. In the present contribution we calculated the maximum pressure for hydrogen-air mixtures in a spherical closed volume at different initial temperatures up to 200 °C. The results represents a continuation of numerous efforts by various research groups, where the key underlying problem has been the understanding of results obtained in laboratory tests for predicting the consequences of gas explosion scenarios in industry.
14.10.2015
A theoretical study on maximum explosion pressure and constant volume adiabatic flame temperature is presented. The maximum explosion pressures, computed by assuming chemical equilibrium within the explosion front are examined in comparison with the measured explosion pressures. Comparisons of the experimentally measured pressures with the calculated adiabatic pressures indicate the degree of adiabacity of the explosion. The calculated peak explosion pressures of methane-air mixtures for ambient conditions are examined in comparison with the experimental values and with the calculated adiabatic explosion pressures. The results represents a continuation of numerous efforts by various research groups, where the key underlying problem has been the understanding of results obtained in laboratory tests for predicting the consequences of gas explosion scenarios in industry.

Nabízíme Vám možnost BEZPLATNÉHO odběru e-mailového zpravodajství

Přehled příspěvků publikovaných na oborovém portálu BOZPinfo zasílaný každý pátek odpoledne

Kde nás najdete

Provozovatel portálu

Výzkumný ústav bezpečnosti práce, v. v. i.
Jeruzalémská 1283/9
110 00 Praha 1
+420 221 015 844
X

Přihlášení

Zapomněli jste heslo?
zašleme vám nové na váš e-mail