maximum explosion pressure

31.01.2018
Process industry continues to be of central importance to the global economy. At the same time refineries are also large, complex sites with many processes, several of which operate at very high levels of pressure and temperature, and a vast pipeline to transport process fluids throughout the site and eventually to external modes of transport.  This combination of factors make refinery sites very vulnerable to a variety of corrosion phenomena that can eventually cause a loss of containment of process fluids, sometimes leading to a serious accident affecting workers, the environment, the surrounding economy and even on occasion the larger economy. This study of corrosion-related accident in refinery is based on important refinery accident in which corrosion of an equipment was identified or suspected as being the key failure leading to the accident event. In this paper, lower explosion limit, LEL, upper explosion limit, UEL, and maximum explosion pressure of coke oven gas measured in 20 dm3 explosion autoclave at 20 °C and 101 kPa, are presented in this paper. Furthermore, the presented measured values at 1.0 bar, 0.75 bar and 0.5 bar and temperatures 323 K and 373 K.
31.01.2018
The values of the coal gas explosion parameters are currently published in the form of the calculations of pure components under standard "atmospheric" conditions. No explosion characteristics of the H2-CH4-CO-C3H8-CO2-N2 and air mixtures measured in 0.02 m3 explosion autoclave have been reported in the literature. The information in the material safety data sheets are given for such complex mixtures using modified Le Chatelier equations. The maximum explosion pressure, pmax, the maximum rate of explosion pressure rise, (dp/dt)max, the deflagration index, KG, lower explosion limit, LEL, upper explosion limit, UEL and limiting oxygen concentration, LOC of coal gas with air mixture at initial temperatures 25 °C, 45 °C, 90 ° C and initial pressure 1 bar, are presented in this paper.
30.09.2016
A numerical study was performed on the explosion characteristics of methanol-air mixtures; at four various initial temperatures and initial pressures. The explosion parameters of explosion pressure were calculated. The influences of initial conditions on the explosion characteristics were discussed. With the initial pressure elevated from 1.0 to 2.5 bar, the peak explosion pressure increases significantly. Post explosion species composition as a function of methanol mole fraction in the methanol-air post-explosion mixtures (15 vol. % of fuel) for P = 1.0 bar(a) and T = 298 K have been determined. These values will be used as approximate initial values for explosion experiments carried out in heated 1 m3 and 20 dm3 explosion apparatuses designed by OZM Research s.r.o. and used at Laboratory of safety fuels and technologies, Energy Research Centre, VŠB - Technical University of Ostrava.
11.01.2016
Renewable energies became more and more important in the last years. The production of biogas using agricultural waste and the use of wind and solar energy in combination with water electrolysis is one way to substitute natural gas. Therefore the number of syngas plants is growing very fast. On the other hand, the operation of such plants could be responsible for a significant number of accidents. The main focuses of this contribution are the explosion characteristics and hazards arising from the biogas. Primarily, these are the hazards of fire and explosion induced by flammable components of syngas. However, further hazards are the dangers of asphyxiation and poisoning by gases such as carbon monooxide. These hazards will be the aim of the following article. In order to prevent explosions when storing and handling syngas it is necessary to know the explosion limits of individual gas components and its gas mixtures in mixture with air. However, syngas from gasification unit can vary significantly in its composition. Therefore, for each gas composition the explosion limits would have to be determined. This would require a considerable amount of time and effort. Due to this fact, the explosion limits of syngas are frequently referred to only by the hydrogen fraction of the gas mixture in the safety-relevant literature. In reality as syngas consists of hydrogen, methane, carbon monoxide, carbon dioxide and further residual gases the explosion limits are generally over or underestimated.
11.01.2016
A theoretical study on maximum explosion pressure is presented. The maximum explosion pressures, computed by assuming chemical equilibrium within the explosion front are examined in comparison with the measured explosion pressures. Comparisons of the experimentally measured pressures with the calculated adiabatic pressures indicate the degree of adiabacity of the explosion. The calculated peak explosion pressures of hydrogen-air mixtures for ambient conditions are examined in comparison with the experimental values and with the calculated adiabatic explosion pressures. In the present contribution we calculated the maximum pressure for hydrogen-air mixtures in a spherical closed volume at different initial temperatures up to 200 °C. The results represents a continuation of numerous efforts by various research groups, where the key underlying problem has been the understanding of results obtained in laboratory tests for predicting the consequences of gas explosion scenarios in industry.
14.10.2015
A theoretical study on maximum explosion pressure and constant volume adiabatic flame temperature is presented. The maximum explosion pressures, computed by assuming chemical equilibrium within the explosion front are examined in comparison with the measured explosion pressures. Comparisons of the experimentally measured pressures with the calculated adiabatic pressures indicate the degree of adiabacity of the explosion. The calculated peak explosion pressures of methane-air mixtures for ambient conditions are examined in comparison with the experimental values and with the calculated adiabatic explosion pressures. The results represents a continuation of numerous efforts by various research groups, where the key underlying problem has been the understanding of results obtained in laboratory tests for predicting the consequences of gas explosion scenarios in industry.

Nabízíme Vám možnost BEZPLATNÉHO odběru e-mailového zpravodajství

Přehled příspěvků publikovaných na oborovém portálu BOZPinfo zasílaný každý pátek odpoledne

Kde nás najdete

Provozovatel portálu

Výzkumný ústav bezpečnosti práce, v. v. i.
Jeruzalémská 1283/9
110 00 Praha 1
+420 221 015 844
X

Přihlášení

Zapomněli jste heslo?
zašleme vám nové na váš e-mail